
RFC 9497: Oblivious
Pseudorandom
Functions Using
Prime-Order Groups

Leonard Wilhelm

Lorenz Gerk

Srividya Subramanian

07.04.2025

C
O

M
-5

06

Introduction

C
O

M
-5

06

2

Example
C

O
M

-5
06

3

Example
C

O
M

-5
06

4

Example
C

O
M

-5
06

5

Shirvanian, Maliheh, et al. "Sphinx: A password store that perfectly hides passwords from itself." 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017.

Example
C

O
M

-5
06

6

Pseudorandom
Functions (PRFs)

C
O

M
-5

06

7

Client Knows Server Knows

Oblivious Pseudo-
random Function
(OPRF)

input, output secret key

Verifiable Oblivious
Pseudorandom
Function (VOPRF)

input, output,
server’s public key

secret key

Partially Oblivious
Pseudorandom
Function (POPRF)

input, output,
server’s public key,
info

secret key, info

F(input, skS) = output

F(input, skS, info) = output

skS = secret key Server

Background

C
O

M
-5

06

8

Prime Order Groups
C

O
M

-5
06

9

▪ Group consisting of:
• Set with prime number of elements
• Operation +: “addition” (not in the classical sense)

▪ Scalar multiplication: k * x = x + x + x + …
• Discrete logarithm problem: y = k * x → hard to compute k

(in certain groups)
▪ Contains a generator element

• Generates the group with scalar multiplication
▪ Examples:

• Prime order groups over elliptic fields: + ≙ Pointaddition
• Prime order subgroups of ℤp

*: + ≙ Multiplication

Protocol

C
O

M
-5

06

10

▪ Key generation (only server)
• Randomly or deterministically derived
• skS = randomScalar()

pkS = skS * generator
▪ Obtain server’s public key (only client for

VOPRF & POPRF)
▪ Create protocol context consisting of:

• Protocol variant
• Protocol version
• Chosen ciphersuite
• Key material

Overview
C

O
M

-5
06

11

OPRF
C

O
M

-5
06

12

OPRF
C

O
M

-5
06

13

blind = randomScalar()
inputElement = toGroupElement(input)
blindedElement = blind * inputElement

OPRF
C

O
M

-5
06

14

evaluatedElement = skS * blindedElement

OPRF
C

O
M

-5
06

15

unblindedElement = scalarInverse(blind) * evaluatedElement

output = Hash(len(input) || input || len(unblindedElement)
|| unblindedElement || "Finalize")

Batch Mode
C

O
M

-5
06

16

▪ Problem:
• Server could use a value ≠ skS
• Client has no way to notice this

▪ How to check if server follows the
protocol, without revealing its key?

VOPRF
C

O
M

-5
06

17

▪ Verifiable OPRF
▪ Additional ZK-proof:

• Private key was used to generate
evaluatedElement

▪ Client only accepts if proof holds
Verifiable computation according
to the protocol

VOPRF
C

O
M

-5
06

18

▪ Assume: Client obtained the public key

▪ How to show that skS was used?

 pkS = skS * generator
evaluatedElement = skS * blindedElement

Use zero-knowledge DLEQ proof!

VOPRF
C

O
M

-5
06

19

▪ Proof that same scalar k was used to compute:
• B = k * A
• D = k * C

▪ Here:
• pkS = skS * generator
• evaluatedElement = sks * blindedElement

▪ Basic idea: return an encryption of k

Discrete Logarithm Equivalence Proof
- DLEQ

C
O

M
-5

06

20

▪ Proof that same scalar k was used to compute:
• B = k * A
• D = k * C

▪ Here:
• pkS = skS * generator
• evaluatedElement = sks * blindedElement

▪ Basic idea: return an encryption of k, e.g. s = r - k, r * A, r * C

▪ Does not reveal k: r not required for computation :D
▪ Trivially easy for the server to cheat :C

Discrete Logarithm Equivalence Proof
- DLEQ

C
O

M
-5

06

21

s * A + B = r * A - k * A + k * A = r * A
s * C + D = r * C - k * C + k * C = r * C

Discrete Logarithm Equivalence Proof
- DLEQ

C
O

M
-5

06

▪ Use transcript, i.e. B, C, D, r * A and r * C, to generate c
• E.g. c = H(B, C, D, r * A, r * C)
• Here: c = H(pkS, blindedElement, evaluatedElement,

 r * generator, r * blindedElement)
▪ Give Client an encryption s of k: s = r - c * k as well as c

▪ Client can then compute H(B, C, D, r * A, r * C) to verify against c
▪ Does not reveal k: r not required for computation :D
▪ Hard for server to cheat: preimage resistance of H :D

22

s * A + c * B = r * A - c * k * A + c * (k * A) = r * A
s * C + c * D = r * C - c * k * C + c * (k * C) = r * C

Discrete Logarithm Equivalence Proof
- DLEQ

C
O

M
-5

06

▪ Use transcript, i.e. B, C, D, r * A and r * C, to generate c
• E.g. c = H(B, C, D, r * A, r * C)
• Here: c = H(pkS, blindedElement, evaluatedElement,

 r * generator, r * blindedElement)
▪ Give Client an encryption s of k: s = r - c * k as well as c

▪ Client can then compute H(B, C, D, r * A, r * C) to verify against c
▪ Does not reveal k: r not required for computation :D
▪ Hard for server to cheat: preimage resistance of H :D

23

s * A + c * B = r * A - c * k * A + c * (k * A) = r * A
s * C + c * D = r * C - c * k * C + c * (k * C) = r * C

Simplified version!
▪ Elements first randomised:

• r2 * blindedElement,
r2 * evaluatedElement

• Client can also compute r2
▪ Hash function takes more inputs

VOPRF
C

O
M

-5
06

24

evaluatedElement = skS * blindedElement
proof = generateProof(skS, generator, pkS,
 blindedElement, evaluatedElement)

VOPRF
C

O
M

-5
06

25

if verifyProof(generator , pkS,
 blindedElements ,
evaluatedElements ,
 proof) == false:
 raise VerifyError

VOPRF - Batch Mode
C

O
M

-5
06

26

POPRF
C

O
M

-5
06

27

POPRF
C

O
M

-5
06

28

framedInfo = "Info" || len(info) || info
m = toScalar(framedInfo)
T = m * generator
tweakedKey = T + pkS

POPRF
C

O
M

-5
06

29

t = skS + toScalar(framedInfo)
tweakedKey = t * generator
evaluatedElement = scalarInverse(t) * blindedElement

proof = generateProof(t, generator, tweakedKey,
evaluatedElements, blindedElements)

POPRF
C

O
M

-5
06

30

unblindedElement = scalarInverse(blind) * evaluatedElement

output = Hash(len(input) || input || len(info) || info ||
len(unblindedElement) || unblindedElement || "Finalize")

Security and
Application
Considerations

C
O

M
-5

06

31

Security Assumptions
C

O
M

-5
06

32

OPRF and VOPRF POPRF

Based on Round-Optimal Password-Protected
Secret Sharing and T-PAKE [1]

3HashSDHI [2]

Security
Assumption

One-More Gap Computational
Diffie-Hellman

One-More Gap Strong Diffie-Hellman
Inversion

Security
Assumption used
for

Pseudorandomness, Input Secrecy,
Verifiability

Pseudorandomness, Input Secrecy,
Verifiability, Partial Obliviousness

Changes
introduced by
RFC

No session identifiers to differentiate
instances of protocol;
supports batching with multiple
evaluations using one proof

Optionally perform multiple POPRF
evaluations in one batch, using one
DLEQ proof object

[1] Jarecki, S., Kiayias, A., and H. Krawczyk, "Round-Optimal Password-Protected Secret Sharing and T-PAKE in the Password-Only Model",
Lecture Notes in Computer Science, pp. 233-253
[2] Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., and C. A. Wood, "A Fast and Simple Partially Oblivious PRF, with Applications",
Advances in Cryptology - EUROCRYPT 2022 pp. 674-705

1. Pseudorandomness
C

O
M

-5
06

33

A consequence of this is non-malleability with high probability:
Given some output F(k, x), it should be infeasible to generate a valid
output F(k, x′) for a related input x′, without knowing the key k.

“For a random sampling of k, F is pseudorandom if the output
y = F(k, x) on any input x is indistinguishable from uniformly

sampling any element in F's range.”

(OPRF and VOPRF)

1. Pseudorandomness
C

O
M

-5
06

34

A consequence of this is non-malleability with high probability:
Given some output F(k, x), it should be infeasible to generate a valid
output F(k, x′) for a related input x′, without knowing the key k.

“For a random sampling of k, F is pseudorandom if the output
y = F(k, x, info) on any input pairs (x, info) is indistinguishable from

uniformly sampling any element in F's range.”

(Extended - POPRF)

2. Unconditional Input Secrecy
C

O
M

-5
06

35

Also known as unlinkability: if the server learns the client's private input
at some time in the future, it cannot link any particular PRF evaluation to
the input. Also applicable to the output y and the server’s private key k.

“The server does not learn anything
 about the client input x, even with unbounded computation.”

(All Protocols)

3. Verifiability
C

O
M

-5
06

36

“The client must only complete execution of the protocol if it can
successfully assert that the output it computes is correct. This is

taken with respect to the private key held by the server.”

For verifiability to hold in practice, the server commits to its public key
before the protocol execution takes place. Then, the client verifies that the
server has used the key in the protocol using the proof.

(VOPRF and POPRF)

4. Partial Obliviousness
C

O
M

-5
06

37

Despite knowing the public input, the server learns nothing about the
client's private input or the output, and the client learns nothing

about the server's private key.

The involved parties must be able to perform the PRF on the client's
private and public input. This property is useful while dealing with key
management operations. For ex., rotation of the server's keys.

(POPRF)

Security Considerations
C

O
M

-5
06

38

▪ Static Diffie-Hellman Attack due to RFC variations
Possible to exploit BlindEvaluate queries to recover bits of the
server's private key if the adversary can query the OPRF directly. Can be
mitigated via rate-limiting, or stronger prime-order groups.

▪ Domain Separation
Any system that has multiple OPRF applications should distinguish client
inputs to ensure the OPRF results are separate.

▪ Timing Leaks
All operations involving secret data — including group operations,
GenerateProof, and BlindEvaluate — must run in constant time to
prevent timing side-channel leaks during protocol execution.

Application Considerations
C

O
M

-5
06

39

▪ Input Limits
Application inputs must be under 216 − 1 bytes; longer inputs should be
hashed to a fixed length before use.

▪ External Interface
Protocols use group elements and scalars internally, but interfaces
should expose clean, app-specific input/output formats.

▪ Error Handling
Operations like BlindEvaluate and Finalize may fail with defined
errors implementations should handle these safely.

Conclusion

C
O

M
-5

06

40

▪ OPRFs already used in praxis, e.g. Privacy Pass
▪ RFC is valuable contribution towards standardizing OPRFs
▪ Future Work:

• Quantum secure OPRFs
• Further formal analysis

Conclusion
C

O
M

-5
06

41

Thank you!

Any questions?

C
O

M
-5

06

42

