RFC 9497: Oblivious
Pseudorandom
Functions Using

Prime-Order Groups
N .

Leonard Wilhelm
Lorenz Gerk

Srividya Subramanian

07.04.2025

=PrL

Introduction

B COM-506

User

Manager Password

User Device

>

Password Manager

Site Password

1

Password
Store

’

Website

=PrL

B COM-506

Example

User

Manager Password

User Device

>

Password Manager

Site Password

1

’

Website

=PFL - Example

User Device

Manager Password Site Password
= > Password Manager > Website

User T

B COM-506

Shirvanian, Maliheh, et al. "Sphinx: A password store that perfectly hides passwords from itself." 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017.

=PrL

B COM-506

Example

User Device

Password Manager

Blind(Manager Password || Domain)

\Blinded Secret

Unblind(Blinded PRF Output)

Blinded PRF Output

PRF(Server Secret, Blinded Secret)

=PrL

B COM-506

Pseudorandom

Functions (PRFs)

Oblivious Pseudo-
random Function
(OPRF)

Verifiable Oblivious
Pseudorandom
Function (VOPRF)

Partially Oblivious
Pseudorandom
Function (POPRF)

Client Knows

input, output

input, output,
server’s public key

input, output,
server’s public key,
info

Server Knows

secret key

secret key

secret key, info

> F(input, skS) = output

> F(input, skS, info) = output

skS = secret key Server

=PrL

Background

=PFL - Prime Order Groups

= Group consisting of:
e Set with prime number of elements
* QOperation +: “addition” (not in the classical sense)
= Scalar multiplication: k * x= x + x + x + ..
* Discrete logarithm problem: y = k * x — hard to compute k
(in certain groups)
= Contains a generator element
* Generates the group with scalar multiplication
= Examples:
* Prime order groups over elliptic fields: + = Pointaddition
* Prime order subgroups of Zp*: + = Multiplication

B COM-506

=PrL

Protocol

=Pr

B COM-506

L

Overview

Offline Phase

Y

Online Phase

N~

Key generation (only server)
* Randomly or deterministically derived
e skS = randomScalar ()
pkS = skS * generator
Obtain server’s public key (only client for
VOPRF & POPRF)
Create protocol context consisting of:
* Protocol variant
* Protocol version
* Chosen ciphersuite
* Key material

11

B COM-506

OPRF

Client

input

Blind

input,

Y

blind

S

blindedElement

evaluatedElement

Final

ize

-

output

v

Server

|
skS
\ 4

BlindEvaluate

12

=PrL

B COM-506

OPRF

Client

input

Blind

blind =

blindedE

randomScalar ()

inputElement = toGroupElement (input)

lement = blind * inputElement

input,

Y

blind

blindedElement

evaluatedElement

Finalize

-

output

v

|
skS
\ 4

BlindEvaluate

=PrL

B COM-506

OPRF :

Client Server
|
input
v
Blind
\ |
blindedElement skS

h 4

BlindEvaluate

input, blind

evaluatedEleme
/
Finalize

I
output

v

evaluatedElement = skS * blindedElement

=PrL

B COM-506

OPRF

unblindedElement =

output = Hash(len(
| | unblindedElement

Finalize

I
output

v

scalarInverse (blind) * evaluatedElement

input) || input || len (unblindedElement)
|| "Finalize")

15

B COM-506

Batch Mode

Client Server
|
List[input]
Blind
\ |
List[blindedElement] SI;S

List[input], List[blind]

BlindEvaluate

List[evaluatedElement]
/
Finalize

I
List[output]
v

=Pr

B COM-506

. OPRF

Client

|
- Problem: Input

* Server could use a value # skS i
* (Client has no way to notice this

= How to check if server follows the

protocol, without revealing its key? blind
input, ind,

l

blindedElement

17

Server

|
skS
A4

P

BlindEvaluate

evaluatedElement

Finalize

.

I
output

v

7. VOPRF

Client Server
I
. Verifiable OPRF input|pkS]
= Additional ZK-proof: -
* Private key was used to generate

evaluatedElement blindedElement skS, pkS

= Client only accepts if proof holds :
m) Verifiable computation according input{pkS]blind, jlindedElement] Finseraale

to the protocol

evaluatedElement,|proof

Finalize /

I
output

v

B COM-506

=Pr

B COM-506

L

VOPRF

= Assume: Client obtained the public key

- How to show that skS was used?

input, pkS| blind, |blindedElement]

pkS skS * generator
evaluatedElement = skS * blindedElement

m)p Use zero-knowledge DLEQ proof!

Client

I
input, pkS |
v

Blind

blindedElement

Server

skS, pkS
\

19

BlindEvaluate

evaluatedElement,|proof

Finalize

.

I
output

v

20

="l Discrete Logarithm Equivalence Proof
- DLEQ

= Proof that same scalar k was used to compute:

e B=k * A

e D=k *C
= Here:

° pkS = skS * generator

* evaluatedElement = sks * blindedElement
= Basic idea: return an encryption of k

B COM-506

21

="l Discrete Logarithm Equivalence Proof
- DLEQ

Proof that same scalar k was used to compute:
e B=%k * A
e D=k * C
= Here:
° pkS = skS * generator
* evaluatedElement = sks * blindedElement
= Basicidea: return an encryptionofk,e.g.s = r - k,r * A,r * C

s * A+ B=r *A-k *A+k *A=1r*A
s*C+D=r*C-k*C+k*C=1r=*C°C
= Does not reveal k: r not required for computation :D
= Trivially easy for the server to cheat :C

B COM-506

22

="l Discrete Logarithm Equivalence Proof
- DLEQ

Use transcript, i.e. B, C, D, r * Aandr * C,togenerate c
- Eg.c = H(B,C,D,r * A, r * C)
* Here: c = H(pkS, blindedElement, evaluatedElement,
r * generator,r * blindedElement)
Give Client an encryption s of k: s=r-c*kas well as c

s *A+c*B=r* A-c¢c*k*A+c* (k *A) =1r * A
s * C+c¢c*D=r*C-c¢c*k*C+c>* (k *C) =1r*C

Client can then compute H (B, C, D, r * A, r * C) to verify against c
Does not reveal k: r not required for computation :D
Hard for server to cheat: preimage resistance of H :D

B COM-506

=PrL

B COM-506

Discrete Logarithm Equivalence Proof

-DLEQ

Use transcript, i.e. B, C, D, r *
 Eg.c = H(B,C,D,r * A, 1
* Here:c = H(pkS, blinded

r * generat

Give Client an encryption s of

s *A+c *B=1r *A-c?

Simplified version!
= Elements first randomised:
* r, * blindedElement,
r, * evaluatedElement
* Client can also compute r,
= Hash function takes more inputs

s *C+ c *D =

r *C-c¢c *k *C+ c *

k * C) =r * C

Client can then compute H (B, C, D, r * A, r * C) to verify against c
Does not reveal k: r not required for computation :D
Hard for server to cheat: preimage resistance of H :D

23

=r. VOPRF

B COM-506

Client

I
input, pkS

Server

24

Blind

input, pkS, blind, blindedElement

Y

I

blindedEle

evaluatedElement = skS * blindedElement
proof = generateProof (skS, generator, pkS,

BlindEvaluate

blindedElement evaluatedElement)

evaluatedElement, proof

Finalize

-

I
output

v

=>r. VOPRF

Client Server

B COM-506

if verifyProof (generator, pkS,

blindedElements,
evaluatedElements,
proof) == false:

o oLdlse VerifyError

ement, proof

Finalize

I
output

v

25

=PrL

B COM-506

VOPREF - Batch Mode

Client

|
List[input], pkS

Blind \

List[blindedElement]

List[input], pkS, List[blind], List[blindedElement]

Y

Finalize

I
output

v

Server

|
skS, pkS
\ 4

BlindEvaluate

List[evaluatedElement], proof

. POPRF

Client Server
input: pkS
info
¥ I
Blind skS
‘ blindedElement ”IO

input, blind, blindedElement
pkS BlindEvaluate

info, tweakedKey

l evaluatedElement, proof
Finalize /

| [voPRF]
output

v [_PoPRF]

B COM-506

=PrL

B COM-506

Client

|
input, pkS, info

Blind

POPRF

input, info, blind,

e o o
framedInfo = "Info" || len(info) || info
m = toScalar (framedInfo)
T = m * generator
tweakedKey = T + pkS
e o o
|
blindedElement SkS,*infO

blindedElement, tweakedKey

l evaluatedElement, proof

Finalize

e

|
output

v

BlindEvaluate

28

=PrL

B COM-506

Client

|
input, pkS, info

POPRF

[] []

t skS + toScalar (framedInfo)
tweakedKey = t * generator
evaluatedElement = scalarInverse (t)

proof = generateProof (t, generator,

Blind

blindedElements)

evaluatedElements,

input, info, blind,
blindedElement, tweakedKey

BlindEvaluate

evaluatedElement, proof

Finalize

e

[
output

v

* blindedElement

tweakedKey,

29

. POPRF

Client Server
|

unblindedElement = scalarInverse (blind) * evaluatedElement

output = Hash(len(input) || input || len(info) || info ||
len (unblindedElement) || unblindedElement || "Finalize")

Finalize

[
output

v

B COM-506

=PrL

Security and
Application
Considerations

B COM-506

Security Assumptions

OPRF and VOPRF

Based on Round-Optimal Password-Protected
Secret Sharing and T-PAKE [

Security One-More Gap Computational
Assumption Diffie-Hellman

Security Pseudorandomness, Input Secrecy,
Assumption used | Verifiability

for

Changes No session identifiers to differentiate
introduced by instances of protocol;

RFC supports batching with multiple

evaluations using one proof

[1] Jarecki, S., Kiayias, A., and H. Krawczyk, "Round-Optimal Password-Protected Secret Sharing and T-PAKE in the Password-Only Model",

Lecture Notes in Computer Science, pp. 233-253

[2] Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., and C. A. Wood, "A Fast and Simple Partially Oblivious PRF, with Applications",

Advances in Cryptology - EUROCRYPT 2022 pp. 674-705

POPRF

3HashSDHI

One-More Gap Strong Diffie-Hellman
Inversion

Pseudorandomness, Input Secrecy,

Verifiability, Partial Obliviousness

Optionally perform multiple POPRF
evaluations in one batch, using one
DLEQ proof object

32

=PrL

B COM-506

1. Pseudorandomness (oPrRF and voPRF)

“For a random sampling of k, F is pseudorandom if the output
y = F(k, x) on any input x is indistinguishable from uniformly
sampling any element in F's range.”

int getRandomNumber ()

return 4. // chosen by foir dice roll.
// Quaranteed to be random.

A consequence of this is non-malleability with high probability:
Given some output F(k, x), it should be infeasible to generate a valid
output F(k, x') for a related input x’, without knowing the key k.

33

=PrL

B COM-506

1. Pseudorandomness (Extended - POPRF)

“For a random sampling of k, F is pseudorandom if the output
y = F(k, x, info) on any input pairs (x, info) is indistinguishable from
uniformly sampling any element in F's range.”

int getRandomNumber ()

return 4. // chosen by foir dice roll.
// Quaranteed to be random.

A consequence of this is non-malleability with high probability:
Given some output F(k, x), it should be infeasible to generate a valid
output F(k, x') for a related input x’, without knowing the key k.

34

=PrL 2. Unconditional Input Secrecy (arn protocols)”

“The server does not learn anything
about the client input x, even with unbounded computation.”

Also known as unlinkability: if the server learns the client's private input
at some time in the future, it cannot link any particular PRF evaluation to
the input. Also applicable to the output y and the server’s private key k.

B COM-506

=PFL 3, Verifiability (vorrFand PoPrF)

B COM-506

“The client must only complete execution of the protocol if it can
successfully assert that the output it computes is correct. This is
taken with respect to the private key held by the server.”

For verifiability to hold in practice, the server commits to its public key
before the protocol execution takes place. Then, the client verifies that the
server has used the key in the protocol using the proof.

36

=PrL

B COM-506

4. Partial Obliviousnhess (rorrF)

Despite knowing the public input, the server learns nothing about the
client's private input or the output, and the client learns nothing
about the server's private key.

The involved parties must be able to perform the PRF on the client's
private and public input. This property is useful while dealing with key
management operations. For ex., rotation of the server's keys.

37

el Security Considerations

B COM-506

Static Diffie-Hellman Attack due to RFC variations

Possible to exploit B1indEvaluate queries to recover bits of the
server's private key if the adversary can query the OPRF directly. Can be
mitigated via rate-limiting, or stronger prime-order groups.

Domain Separation
Any system that has multiple OPRF applications should distinguish client
inputs to ensure the OPRF results are separate.

Timing Leaks

All operations involving secret data — including group operations,
GenerateProof, and BlindEvaluate — must run in constant time to
prevent timing side-channel leaks during protocol execution.

38

=L Application Considerations

B COM-506

Input Limits
Application inputs must be under 27° - 1 bytes; longer inputs should be
hashed to a fixed length before use.

External Interface
Protocols use group elements and scalars internally, but interfaces
should expose clean, app-specific input/output formats.

Error Handling
Operations like BlindEvaluate and Finalize may fail with defined
errors implementations should handle these safely.

39

=PrL

Conclusion

=PrL

B COM-506

Conclusion

= OPREFs already used in praxis, e.g. Privacy Pass
= RFC is valuable contribution towards standardizing OPRFs
= Future Work:

* Quantum secure OPRFs

* Further formal analysis

41

=PrL

Thank you!

Any questions?

B COM-506

